Adaptive Thresholding for Sparse Covariance Matrix Estimation

نویسندگان

  • Tony CAI
  • Weidong LIU
چکیده

In this article we consider estimation of sparse covariance matrices and propose a thresholding procedure that is adaptive to the variability of individual entries. The estimators are fully data-driven and demonstrate excellent performance both theoretically and numerically. It is shown that the estimators adaptively achieve the optimal rate of convergence over a large class of sparse covariance matrices under the spectral norm. In contrast, the commonly used universal thresholding estimators are shown to be suboptimal over the same parameter spaces. Support recovery is discussed as well. The adaptive thresholding estimators are easy to implement. The numerical performance of the estimators is studied using both simulated and real data. Simulation results demonstrate that the adaptive thresholding estimators uniformly outperform the universal thresholding estimators. The method is also illustrated in an analysis on a dataset from a small round blue-cell tumor microarray experiment. A supplement to this article presenting additional technical proofs is available online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Covariance Estimation by Thresholding Principal Orthogonal Complements.

This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (PO...

متن کامل

Optimal Rates of Convergence for Sparse Covariance Matrix Estimation By

This paper considers estimation of sparse covariance matrices and establishes the optimal rate of convergence under a range of matrix operator norm and Bregman divergence losses. A major focus is on the derivation of a rate sharp minimax lower bound. The problem exhibits new features that are significantly different from those that occur in the conventional nonparametric function estimation pro...

متن کامل

Optimal Rates of Convergence for Sparse Covariance Matrix Estimation

This paper considers estimation of sparse covariance matrices and establishes the optimal rate of convergence under a range of matrix operator norm and Bregman divergence losses. A major focus is on the derivation of a rate sharp minimax lower bound. The problem exhibits new features that are significantly different from those that occur in the conventional nonparametric function estimation pro...

متن کامل

Positive-Definite 1-Penalized Estimation of Large Covariance Matrices

The thresholding covariance estimator has nice asymptotic properties for estimating sparse large covariance matrices, but it often has negative eigenvalues when used in real data analysis. To fix this drawback of thresholding estimation, we develop a positive-definite 1penalized covariance estimator for estimating sparse large covariance matrices. We derive an efficient alternating direction me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011